Integrity Diagnostics provides inspection and monitoring services of tubular Low Density Polyethylene (LDPE) reactors using Diagnostic Acoustic Emission technology. Inspection and monitoring are performed during normal operation of the reactor using explosion proof equipment or during periodic hydro-static tests. Integrity Diagnostics developed a unique approach for analysis of acoustic emission signals in operating reactor. Despite significant operational noises due to product flow, valves operation, vibration and friction, DAE method allows filtering out noises reliably (Figure 1) and detecting (Figure 2), locating (Figure 3) and assessing flaws developing in reactor tubes including such as fatigue cracks, stress corrosion cracks, general electrochemical corrosion and other. Detection of flaws by DAE method is not limited to surface or embedded flaws or to flaw position along the tube. Periodic or continuous monitoring of revealed flaws is used to alert when repair or replacement is required. Thanks to the fact that DAE examinations performed during operation, operational issues causing flaw initiation and development are often identified.

Figure 1. Typical noise signals due to friction and LDPE reactor operation
DAE examinations of LDPE reactors comply with the best AE practices including the following standards:

What is Acoustic Emission?

Diagnostic Acoustic emission technology is based on detection and analysis of acoustic emission (stress) waves radiated during elementary crack propagation, local plastic deformation development around stress concentrators such as inclusions or other. Once emitted, acoustic emission waves propagate along the inspected structure for distances of meters and then are detected by special acoustic emission sensors that convert mechanical disturbance produced by AE waves into electrical signals.

Special analysis of detected AE signals is then performed to locate acoustic emission flaw sources, identify flaw type, evaluate rate of flaw propagation and its sensitivity to load/stress/operational changes.

\[d = \frac{1}{2} (D - \Delta T \cdot V) \]

- \(d \) = distance from first hit sensor
- \(D \) = distance between sensors
- \(V \) = wave velocity

Other mechanical sources of Acoustic Emission (AE) are friction and impacts, detection and analysis of which are used to identify leaks, friction, vibrations and others.